پیش بینی رسانایی گرمایی نانوسیال گرافن با مدل شبکه عصبی مصنوعی چند لایه پرسپترون

Authors

  • سهیلا خسروجردی دانشجوی کارشناسی ارشد، دانشگاه آزاد اسلامی، واحد تهران مرکزی، باشگاه پژوهشگران جوان و نخبگان، تهران، ایران
  • مسعود وکیلی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران
Abstract:

هدف از این مطالعه مدلسازی و پیش بینی رسانایی گرمایی نانو سیال گرافن به کمک شبکه عصبی مصنوعی چند لایه پرسپترون است. پارامترهای دمای نانوسیال، کسرحجمی و رسانایی گرمایی نانو ذره به عنوان ورودی شبکه در نظر گرفته شده است. بااطلاعات مربوط به اندازه گیری‌های تجربی محققین قبلی در مورد رسانایی گرمایی نانوسیال گرافن در دمای 25 تا 50 درجه سلسیوس و در کسر حجمی  005/0 تا 056/0 تست عملکرد شبکه انجام شده است. جهت بررسی میزان دقت مدل در پیش‌بینی رسانایی گرمایی نانوسیال، از شاخص‌های جذر میانگین مربعات خطا، ضریب تشخیص و درصد میانگین مطلق خطا استفاده شده است که این مقادیر به ترتیبW/mK04/0 ،99 درصد و 26/0 درصد است. نتایج حاصل از شاخص ها ، دقت و اطمینان مدل ارایه شده را در مقایسه با نتایج تجربی و مدل های تئوری را نشان می دهد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

هیه نقشه کاربری اراضی شهر سبزوار با استفاده از روش‌های حداکثر احتمال و شبکه عصبی مصنوعی پرسپترون چند لایه

از جمله عوامل مهم در برنامه‌ریزی و مدیریت شهری، به ویژه در راستای نیل به توسعه‌ی پایدار در نواحی شهری و استفاده بهینه از سرزمین، اطلاع بهنگام از وضعیّت پوشش اراضی برای این مناطق است. داده‌های سنجش از دور به جهت ارائه‌ی اطلاعات به هنگام و رقومی، تنوع اشکال و امکان پردازش پتانسیل بالایی برای تهیه‌ی نقشه‌های به روز کاربری اراضی شهری دارند. در این تحقیق با استفاده از تصویر ماهواره‌ای Landsat/ETM+ و ...

full text

پیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA

تبدیل موجک یکی از روش­های نوین و بسیار موثر در زمینه تحلیل سیگنال­ها و سری­های زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، داده­های حاصل به­عنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیش­بینی خشکسالی ارائه می­گردد. در این تحقیق، از شبکه­های عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایه‌ای شعاعی ((RBF، سری زمانی AR...

full text

تشخیص خودکار مدولاسیون با استفاده از برنامه نویسی ژنتیک و شبکه عصبی چند لایه پرسپترون

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. In this research we implemented our model by using appropria...

full text

پیش بینی تغییرات پارامتر رسانایی الکتریکی در آب زیر زمینی شهر تهران با کمک شبکه عصبی مصنوعی

جهت بررسی کیفیت آب زیر زمینی تهران با توجه به برداشت 10 سال گذشته از پارامتر های هیدروشیمیایی مربوط به 71 نقطه مختلف از شهر تهران سه مدل مختلف شبکه عصبی مصنوعی با تعداد پارامتر های مختلف ورودی و خروجی پارامتر رسانایی الکتریکی تعریف گردید. مشاهده می شود که به جهت تخمین پارامتر رسانایی الکتریکی با سعی و خطای فراوان تابع محرک تانژانت با تابع آموزش مومنتم دارای خطای کمی خواهند بود. با کمتر کردن مقد...

full text

پیش بینی دماهای ماهانه ایستگاه های همدید منتخب استان اصفهان، با استفاده از شبکه عصبی مصنوعی پرسپترون چندلایه

پیش بینی دما از کاربردی ترین برآوردهای عناصر آب و هوایی است. امروزه بخش های کشاورزی و صنعت وابستگی زیادی به شرایط دمایی (آب و هوا) دارند. دما یکی از فراسنج های بسیار مهم آب و هوایی است و از عوامل اصلی هویت آب و هوایی هر ناحیه محسوب می شود. هدف از انجام این پژوهش، مدل سازی برای پیش بینی میانگین دمای ماهانه ایستگاه های منتخب استان اصفهان است؛ از این رو، پس از بررسی طول دوره آماری ایستگاههای موجود...

full text

مدل‌سازی پهنه‌های اکتشاف نفتی با شبکه عصبی پرسپترون چند لایه (MLP) در GIS

فرآیند اکتشاف منابع هیدروکربنی به‌عنوان فرآیندی بسیار پیچیده و پرهزینه می‌باشد. در این فرآیند فاکتورهای متعدد زمین‌شناسی، ژئوشیمی و ژئوفیزیک تهیه و باهم تلفیق می‌شوند. طراحی بهترین مسیر برای برداشت داده‌های لرزه‌نگاری و همچنین تعیین بهترین محل برای حفر چاه‌های اکتشافی از اهمیت ویژه‌ایی برخوردار است، زیرا نتیجه تعیین نادرست یا بی‌دقت این مکان‌ها، صرف هزینه و زمان زیاد در طول عملیات می‌باشد. این ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 47  issue 3

pages  319- 323

publication date 2017-11-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023